
Isambard est une machine de dix mille processeurs ARM (moins puissante qu’Astra, récemment déployée aux États-Unis). Son exploitant, GW4 (un rassemblement de quatre universités anglaises), l’a comparée aux supercalculateurs existants sur différentes mesures.
Leurs résultats montrent que, en termes de puissance brute, l’architecture ARM n’est pas la plus compétitive, mais qu’elle pourrait se tailler une part de marché importante. Trois processeurs sont en lice : Cavium ThunderX2 (ARM, trente-deux cœurs), Intel Xeon Broadwell (x86, vingt-deux cœurs) et Intel Xeon Skylake (x86, vingt-huit cœurs).

La comparaison indique, sans surprise, que les processeurs d’Intel sont bien meilleurs quand il s’agit d’effectuer des opérations en virgule flottante. Notamment, la génération Skylake propose les instructions AVX2, qui peuvent travailler sur des vecteurs de cinq cent douze bits d’un seul coup : côté ARM, cette longueur est limitée à cent vingt-huit bits (deux nombres en virgule flottante avec une double précision, la plus utilisée en calcul scientifique).
Au contraire, les processeurs Intel sont déficients du côté de la mémoire : la bande passante du ThunderX2 est presque vingt-cinq pour cent supérieure à celle de la génération Skylake. De fait, le ThunderX2 dispose de huit canaux d’accès à la mémoire (six côté Skylake). Les caches sont souvent à l’avantage des processeurs Intel. Ceci signifie que ces derniers sont préférables pour tous les codes de calcul extrêmement intenses en opérations en virgule flottante (idéalement, toutes les données pouvant tenir dans les caches), mais pas en opérations mémoire, où le ThunderX2 brille bien plus.
Un autre avantage des processeurs ARM est leur prix. Bien que celui des processeurs utilisés pour Isambard n’a pas été dévoilé, il a été décrit comme “réduit d’un facteur deux à trois”. Le rapport performance-prix est donc bien plus intéressant — un facteur qui sera privilégié par certains acteurs de moindre taille.
La conclusion principale de cette analyse est que les processeurs ARM ont toute leur place dans les infrastructures HPC modernes, selon les cas d’utilisation prévus. Il est illusoire d’espérer obtenir une puce parfaite, capable d’effectuer un très grand nombre d’opérations par seconde et de disposer d’un très grand nombre de canaux d’accès à la mémoire, puisque le nombre de transistors est limité par processeur (à moins d’augmenter fortement la quantité de silicium qui est utilisée, ce qui ferait grimper fortement les prix).
Source : Benchmarks in Hand, UK Academics See Promising Future for Arm Chips in HPC.
Vous avez lu gratuitement 3 articles depuis plus d'un an.
Soutenez le club developpez.com en souscrivant un abonnement pour que nous puissions continuer à vous proposer des publications.
Soutenez le club developpez.com en souscrivant un abonnement pour que nous puissions continuer à vous proposer des publications.